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ABSTRACT  
Babcock is an international aerospace, defence and security company ensuring over 30,000 military vehicles 
are kept mission ready. Our Research and Development (R&D) program is creating a Digital Twin to 
anticipate faults and prescribe maintenance before in-field failure. Asset health is continuously assessed in 
real time from live sensor data, providing assurance of field operation and dynamic mission reconfiguration 
in response to anticipated fault. This permits autonomous vehicles to report on remaining useful life of their 
primary components and interact with our smart supply chain to autonomously order spare parts and 
schedule maintenance. This paper presents the development lifecycle of our military land vehicle Digital 
Twin. Two diagnostic frameworks are proposed combining physics-based and data-driven formulations. By 
replacing driver intuition and optimising maintenance, Babcock’s Digital Twin directly supports 
autonomous and attritable vehicle capability. 

1.0 INTRODUCTION 

Babcock is an international aerospace, defence and security company for militaries across the world. Our 
Land Defence business manages over 30,000 military vehicles, providing deployed support through to 
complicated strip down and refit. We manage a complex supply chain of over 200,000 spare parts that need 
to be in the right place at the right time to keep our customers’ vehicles mission-ready. 

Through our Research and Development (R&D) programme we’re creating the in-service support model of 
the future – Digital Twin for condition based maintenance. Our system has been deployed successfully in 
naval marine assets, and we are committed to delivering the same success for military land vehicles. 

Knowing an asset is materially fit is key to successful deployment. Babcock’s technology captures live data 
from managed assets and extracts key health insights transmitted to a support operations centre. This permits 
high confidence in mission success. Predictive capabilities also ensure that during the mission, if 
circumstances change, dynamic asset information is available for mission reconfiguration. 

Our technology relies on physics of failure. Using in-line sensors fed to an on-board processor, our Digital 
Twin uses advanced physical models to deliver real-time fault prediction on a per-unit basis. We enable 
platforms around the world to autonomously report on remaining useful life and interact with our smart 
supply chain to autonomously order parts and schedule maintenance. This achieves enhanced subsystem 
reliability, extended operational life and reduced per-unit sustainment cost. 

Babcock’s Digital Twin has remarkable success delivering predictive and prescriptive diagnostics in military 
land vehicles. This paper demonstrates these positive outcomes at various stages of the project lifecycle. The 
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contributions are as follows: 

1.1 Fault Prediction in Military Land Vehicles 
Offline development of our Digital Twin system for military diesel engines was formulated in the authors’ 
previous work in AVT-355 (Heron, et al., 2021). A physics-based thermodynamic model was developed to 
indirectly gauge diesel engine compression loss, among other common faults, from field-realisable sensor 
data.  

This paper presents key findings from the laboratory and dynamometer tests of the same system, ready for 
verified and validated conclusions in a fleet of military vehicles in active service. The success of our system 
for in-line fault prediction will be empirically demonstrated from live sensor data within this fleet. 

1.2 Advanced Computational Models 
Literature on engine fault prediction generally falls into two categories: Physics-Based Models e.g. 
(Connolly & Yagle, 1993; Shiao & Moskwa, 1995; Al-Durra, et al., 2011; Arnone, et al., 2009), and Data-
Driven Models, e.g. (Wang, et al., 2020a; Wang, et al., 2020b; Alex Gong, et al., 2020; Wu, et al., 2020; 
Maschler, et al., 2020). Physics-Based models define a specific formulation for each intended purpose. This 
form of analysis is rigorously time tested and highly mature. However, various required assumptions and 
approximations mean a significant amount of underlying physics is ignored. Data-Driven Models are capable 
of describing both known and unknown physics by constructing a nonlinear statistical representation of 
inputs and outputs, for example via machine learning techniques. However, they are brittle to the quantity 
and quality of their training dataset.  

This paper formulates fault prediction using a combination of physics- and data-driven models. A physics-
based formulation is demonstrated in laboratory testing. Meanwhile, a data-driven neural networks approach 
is defined to support predicted outputs. In this way, key subject-matter expertise is utilised while avoiding 
complications from sparse and incompatible datasets. 

1.3 Digital Twin 
Digital Twins are cited as one of the most disruptive technology trends this coming decade (Garfinkel, 2018; 
Marr, 2019). Broadly, a Digital Twin is a software representation of an asset updated in real-time using live 
data inputs (General Electric, 2018). This permits monitoring, optimisation and predictive maintenance 
during a product’s active service. 

A typical Digital Twin design lifecycle is outlined in (Moyne, et al., 2020) using practical examples from 
(Iskandar, et al., 2015; Schalkwyk, et al., 2019; Boschert & Rosen, 2016; Kibira, et al., 2016), among others. 
The lifecycle is divided into two phases:  

• Offline Development: Data, analytics and expertise are assembled to design, develop, verify and 
validate Digital Twin solutions. Offline data is usually historical. ‘Verification’ determines 
whether a design meets requirements. ‘Validation’ determines if it meets the user’s needs. 

• Online Deployment and Maintenance: The qualified off-line solution is deployed, used, 
continuously evaluated and maintained. Once deployed, the Digital Twin uses live data from its 
operation environment to assess the state and condition of its aspects and make recommendations. 

This methodology is directly representative of our approach, and with such, Babcock has seen great success 
in developing Digital Twins for Defence assets. This paper presents our land vehicle Digital Twin through its 
full lifecycle, from offline development through to online deployment. 



Digital Twin for In-Line Fault Prediction in Military Unmanned Vehicles 

STO-MP-AVT-356 9 - 3 

 

 

1.4 Attritable Systems 
Attritability is the measure of a system’s reliability and sustainability against the cost of the system. 
Attritable Systems are developed to minimise their through-life cost by reducing overall system cost at the 
expense of reliability and maintainability. Successful in-line fault prediction inherently lowers sustainment 
cost. Accurate and up-to-date information on an asset’s health and capability allows units to remain 
operational longer without human intervention. By triggering maintenance based on informed active data 
rather than regular (probabilistic) checks, unnecessary upkeep is avoided. Fewer parts need to be sourced for 
refit, and less time is spent in outage due to repairs. Overall, this extends quality service at lower cost, and is 
directly in line with the attritable system paradigm. 

1.5 Autonomous Vehicles 
Autonomous vehicles are rapidly emerging as the principal transport medium of the 21st century. In a 
military context, the transition from driven to driverless vehicles reduces the cost of casualty by eliminating 
human risk. However, this has profound maintenance implications. Drivers can deliver various subtle 
observations on engine health, such as an odd noise during start-up or the smell of oil in the cabin, triggering 
maintenance checks to identify faults before complete engine breakdown. Without a driver to deliver these 
observations, advantage for vehicle upkeep is lost. Babcock’s Digital Twin provides autonomous insight into 
engine condition to replace driver intuition. 

2.0 THE DIGITAL TWIN 

Our pilot Digital Twin for military land vehicles aims to provide autonomous insight into engine condition 
for real-time health diagnostics. The chosen vehicle has high failure rate due to compression loss in its 
diesel engine. Accordingly, this project specifically targets in-line prediction of compression loss, among 
other common faults, to eliminate a major source of operational defect (Op Def). 

2.1 System Model 
A thermodynamic model for single zone cylinder pressure is detailed in the authors’ previous work in 
(Heron, et al., 2021), using insight from (Gatowski, et al., 1984; Ramos, 1989; Shiao & Moskwa, 1995). 
This defines a differential model assuming uniform pressure and temperature and homogenous charge 
within the cylinder 

 

Where  is pressure in cylinder ,  is combustion heat release rate,  is combustion heat transfer rate 
out of the cylinder,  is overall cylinder volume and  the static compression ratio.  is given 

 

Where  is lower heating value and  is mass of fuel burnt, estimated by Wiebe function 

 

Where  is injected fuel mass,  is crankshaft angle,  is combustion start angle,  is combustion 
duration, and  are constants.  
Since swept volume is a function of  and  is directly related to , the differential model in Error! 
Reference source not found.-Error! Reference source not found. can be solved numerically knowing , 

 and a starting pressure taken as air intake pressure  at inlet valve closure. The indicated torque then 
relates geometrically to the sum of cylinder pressure forces about the crankshaft 
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Where  is number of cylinders,  is cylinder cross-section and  is the effective moment, itself a 
trigonometric function of  and piston offset.  
Direct measurement of cylinder pressure and indicated torque is often impractical. High-temperature 
piezoelectric sensors designed to fit through a mounting bore in the cylinder head can seldom endure the 
full engine life cycle in field operation, and present a liability for military vehicles. Similarly, torque 
transducers must be mounted in the crankshaft or drive-train in line with load-carrying components, often 
requiring significant mechanical redesign. Eq. Error! Reference source not found.-Error! Reference 
source not found. permit in-line numeric calculation of expected cylinder pressure and indicated torque 
based on three key input variables . 
As there is negligible energy loss within the cylinder between the compression and exhaust stroke, these 
same key inputs also determine the in-cylinder state through the exhaust stroke, and so form a strong 
function for exhaust gas temperature and pressure . Each of the three key input features and 
exhaust gas temperature and pressure will be readily measurable via sensors installed on the engine during 
the offline development cycle. Any engine fault leading to degradation in  will manifest as a 
deviation in these exhaust properties from normal operating conditions. Characteristic and anomalous 
deviations are identified by combining Physics-Based and Data-Driven Models (see Sec. 3.0) to achieve 
in-line diagnostics in our Digital Twin system. 

2.2 Simulation Model 
The model in Sec. 2.1 describes processes within each cylinder of an internal combustion engine. The engine 
in question has six cylinders interacting at the intake and exhaust manifolds, which in turn are separated from 
the atmosphere by a turbocharger and intercooler. Intake air and exhaust properties are therefore 
interdependent. Further, an in-line fuel injection pump means the precise mass of fuel in each cylinder is 
interdependent with cylinder pressure, as well as throttle and engine speed. This complex inter-relation of 
thermodynamic processes requires a virtual representation of the complete engine system, shown Fig. 1, to 
correctly model its operation. 

 
Figure 1: Complete engine system, with mounted sensors forming inputs to the Digital Twin. 
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Turbomachinery performance is defined by maps linking efficiency, mass flow rate and shaft speed to 
pressure ratios across the turbine and compressor. Gas exchange processes between engine components are 
approximated via quasi-steady models. These consider the engine as an interconnection of flow restrictions 
defined by their geometry and discharge coefficients under steady-state conditions. One dimensional flow 
equations then compute equilibrium gas flow rate through the system, neglecting mass accumulation 
between components. Quasi-steady models are effective at predicting engine performance from a 
thermodynamics-based analysis; however, they cannot accurately predict variation in volumetric efficiency 
with engine speed, since they do not model pulsating and compressible flow processes such as time-variable 
valve opening, intake/exhaust flow friction, gas inertia effects, tuning, choking, intake and in-cylinder heat 
transfer, wave propagation, etc. (Heywood, 1988, pp. 212, 825-833). These more complex processes are 
approximated empirically by their overall effect on volumetric efficiency, calibrated during laboratory 
testing. 

Ricardo WAVE (2021) is a bespoke dynamic simulation tool for analysing combustion and exhaust 
configurations. This software is used to construct our physics-based Digital Twin for engine operation. This 
simulates quasi-steady interactions between engine components, including the intake, turbocharger, 
intercooler, intake manifold, engine block and exhaust manifold. The geometry of each component is 
constructed from cylindrical volumes (pipes and junctions), ensuring overall volume is consistent with the 
physical part.  

The simulation is calibrated in laboratory using a dynamometer test rig. Dynamometers apply and measure 
torque at various rotational speeds. Testing is conducted by incrementing crankshaft speed  from 1200 to 
2400 rpm at a variety of torques between 100 and 500 Nm while measuring key parameters. Intake and 
exhaust  
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Figure 2: Brake Torque. 

 
Figure 3: Exhaust Gas Temperature. 

 
Figure 4: Intake Manifold Pressure. 
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properties  are measured directly by onboard sensors. Fuel mass  is calibrated to throttle 
position  by measuring overall fuel input at each speed and throttle increment. Friction torque is assessed 
using a Willans line approximation (Pachernegg, 1969).  

Simulation accuracy is established by the difference between experimental and model-predicted outputs. 
These are compared for Brake torque, i.e. indicated torque minus friction, in Fig. 2, where a mean error less 
than 3% is achieved. A large positive error is observed at high engine speeds, where the simulation predicts 
higher torque than is physically delivered by the engine. This is attributed to the engine’s age, where oil 
degradation, bearing and valve wear lead to higher hydrodynamic friction in primary components and 
turbulent energy dissipation in connected accessories. Further analysis will be performed following the 
collection of a wider population of engine data, to assess the possibility of age degradation detection using 
this apparent decline in torque, which could be used to intelligently impact overhaul scheduling. 

The same for exhaust gas temperature and intake air pressure is shown Fig. 3, 4, respectively. Both show 
errors consistent with brake torque, indicating a high level of overall accuracy. A strong positive correlation 
is also observed between these properties and the brake torque, suggesting they are good indication of engine 
health. 

3.0 IN-LINE DIAGNOSTICS 

Sensors mounted to the engine as well as various corresponding fault mechanisms are detailed in the authors’ 
previous work in (Heron, et al., 2021). These sensors, illustrated Fig. 1, form live data inputs to the Digital 
Twin that will deliver in-line diagnostics. Using these inputs, faults are detected, identified and predicted 
based on deviations from normal operating conditions with a combination of Physics-Based and Data-Driven 
Models.  

3.1 Physics-Based Diagnostics 
Running the engine to failure under deliberately induced faults in a laboratory test environment is 
undesirable due to the cost per engine unit as well as safety for staff and connected equipment. The 
simulation model in Sec. 2.0 permits faults to be replicated in a virtual environment, thereby avoiding this 
unit cost. By replicating faults in simulation, characteristic deviations required for identification are 
determined.  

The simulation is used to construct a database of look-up tables for normal operation as well as various 
simulated faults. Diagnostics occur in two categories: Fault Prediction is achieved by identifying 
characteristic deviations from the normal operating range according to a simulated fault. Fault Detection is 
achieved via anomalous deviation, defined as any uncharacteristic deviation beyond a set threshold. Correct 
thresholds are first chosen from dynamometer data, then adjusted during in-line field testing. 

The six faults to be simulated are as follows: 

(a) Cylinder Leakage: To replicate worn out piston rings or head gasket damage. This is replicated by 
applying orifices of incremental size into the cylinder wall.  

(b) Valve Fault: (For intake or exhaust) 
1. Leakage: Occurs if valve becomes unseated. Replicated by increasing valve clearance to 

give a constant opening. 
2. Blockage: Either full or partial. Occurs due to wear in the camshaft mechanism. 

Replicated by reducing valve clearance to give smaller opening. 
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(c) Injector Blockage: Due to fault in the in-line fuel injection pump. Replicated by reducing injection 
quantity. 

The six faults will be applied incrementally to two, four and six cylinders, at twelve operation points in the 
engine’s dynamic range according to the European Stationary Cycle method (Euro III, 2000). The resulting 
trends in operating parameters will characterise deviations for fault prediction.   

3.2 Data-Driven Diagnostics 
Changes to quasi-steady conditions resulting from various fault mechanisms can be deduced using physics-
based models in simulation. However, this does not model pulsating and compressible flow processes, 
discussed Sec. 2.2, nor the numerous dynamic transients that occur before quasi-steady conditions settle. 
Physical modelling of these complex processes is significantly more intensive in both labour and 
computational resources, and practically they must be treated as noise and eliminated in post-processing. 
This elimination is undesirable, since these complex processes, detected by on-board sensors, contain 
information about engine health that can be used for diagnostics. Our Digital Twin seeks to exploit trends 
within this “complex” information by using data-driven modelling to support our physics-based approach. 
To this end, a recursive autoencoder neural network, shown Fig. 5, is trained to deliver enhanced fault 
detection using data from normal engine operation. 

Autoencoders can be divided into Encoder and Decoder components. The Encoder maps input matrix  to a 
lower-dimension central hidden layer . The Decoder maps  to an output layer  of same size as . Trained 
by backpropagation (Rumelhart, et al., 1986; Bourlard & Kamp, 1988), this arrangement achieves highly 
nonlinear dimensionality reduction (Hinton & Salakhutdinov, 2006) where  is a latent representation of . 
Trained only with non-anomalous data, the autoencoder will learn to produce accurate reconstructions only 
when presented with normal engine operation. When anomaly occurs, the network will produce high 
reconstruction loss as it fails to precisely replicate the input. A statistically significant reconstruction loss 
indicates fault (Malhotra, et al., 2016). Input matrix  consists of a multivariate time series, with each 

 
Figure 5: Recursive Autoencoder Neural Network to support Physics-Based Fault Detection. 
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timestamp consisting of multiple sensor readings. To exploit this temporal dimension, hidden layers within 
the Encoder and Decoder are made recurrent in a Long Short Term Memory (LSTM) block architecture 
(Hochreiter & Schmidhuber, 1997). 

This architecture is widely used for anomaly detection (Zhou & Paffenroth, 2017; Malhotra, et al., 2016; 
Principi, et al., 2019), and has advantage here as it requires only one class of data during training. This is 
essential, since initially only normal engine operation data will be available in sufficient quantities. Training 
data will be gathered in three stages: 

1. Initialisation: Dynamometer logs combined with noise-induced simulation outputs will be used to 
make coarse architectural adjustments and tuning of encoder and decoder layers. 

2. Affirmation: Field testing stage 1 (Sec. 4.0) will begin with 50km pilot trials on five military 
vehicles chosen for a characteristic spread of age and condition.  

3. Confirmation: Field testing stage 2 involves twelve in-service military vehicles of varying age and 
condition in live field operation. Data are gathered continuously to our online database. 

At each stage, newly available data will be used to test and retrain the neural network as required. Training 
utilises only normal operation data, while testing requires both normal and faulty engines. Engines may be 
identified as ‘faulty’ for training purposes in any stage of field testing. 

3.2.1 Training 

At each training stage, a subset of the non-anomalous data will be set aside to prevent overfitting. Dividing 
this subset into segments  reconstruction loss is defined 

 

Where  indicates the Euclidean norm. Post-training,  will be used to construct a normalised probability 
distribution  of non-anomalous reconstruction losses via maximum likelihood estimation. 

3.2.2 Testing 

Testing uses class-labelled anomalous and non-anomalous segments, where label  indicates fault. For each 
segment, the neural network produces a reconstruction loss  and detects anomaly  according to  

 

Where  indicates probability and  is a hyperparameter, optimised according to  

 

The  score will be used to indicate the overall success of the neural network for fault detection. 

4.0 FIELD TESTING 

Field testing of our Digital Twin will take place in three stages. As there is no participation from the OEM, 
there is no historical data available, and all data used during verification and validation is collected by the 
Digital Twin during these trials.  
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4.1 Stage 1 – Verification 
Pilot trials of 50km will be undertaken by three military vehicles. One of these vehicles is known to be 
faulty, the remaining two operate normally. The physics-based fault detection model will be tested to adjust 
thresholds for characteristic and uncharacteristic deviations. Training and testing data will also be delivered 
to affirm the neural network. The purpose of these trials is to verify that the Digital Twin meets 
requirements. 

4.2 Stage 2 – Validation 
Live data will be gathered from twelve military vehicles on active service over a period of three months. 
Data will be gathered continuously, feeding back to our online database via cellular and satellite link. The 
vehicles are specifically chosen for a characteristic spread of age and condition. The purpose of these tests is 
to validate our physics-based and data-driven diagnostics subject to military needs.  

4.3 Stage 3 – Online Deployment 
Following the successful validation of the Digital Twin in stage 2, Babcock will then deploy the Digital 
Twin in a wider population of the same military vehicles. As outlined in section 1.3, this begins the online 
development and maintenance phase and will enable a catalogue of characteristic faults to be developed from 
our engine log database, delivering enhanced fault prediction and detection services via increasingly nuanced 
combinations of physics- and data-driven approaches. In this way, diagnostic capability will be continuously 
improved. 

5.0 CONCLUSION 

Babcock is a leading in-service support partner for militaries across the world. Our R&D programme is 
developing Digital Twins to deliver in-line real-time health assessment of strategic assets in active service. 
This paper details our methodology for the development at each stage of our pilot project into military land 
vehicles. The contributions are as follows: 

• Digital Twins are cited as one of the most disruptive technology trends of this decade. This paper 
presents the development lifecycle of our military vehicle Digital Twin from offline development 
through to online deployment. 

• Two fault detection models are proposed using physics-based and data-driven formulations. 
Combining these approaches exploits both known and unknown physics to interpret all available 
information from deployed sensors. 

• Real-time evaluation of asset health is directly in line with the attritable system paradigm. Successful 
development of the Digital Twin will result in extended quality service at lower cost by reducing 
down time and optimising maintenance.  

• The transition from driven to driverless vehicles eliminates driver intuition as a key diagnostic tool. 
In-line fault prediction provides autonomous insight into engine condition to support upkeep of 
unmanned vehicles. 

Babcock’s Digital Twin permits confidence in material assets and dynamic awareness of unit health, 
ensuring vehicles are mission-ready when it matters most. 
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